DcpS scavenger decapping enzyme can modulate pre-mRNA splicing.
نویسندگان
چکیده
The human scavenger decapping enzyme, DcpS, functions to hydrolyze the resulting cap structure following cytoplasmic mRNA decay yet is, surprisingly, a nuclear protein by immunofluorescence. Here, we show that DcpS is a nucleocytoplasmic shuttling protein that contains separable nuclear import and Crm-1-dependent export signals. We postulated that the presence of DcpS in both cellular compartments and its ability to hydrolyze cap structure may impact other cellular events dependent on cap-binding proteins. An shRNA-engineered cell line with markedly diminished DcpS levels led to a corresponding reduction in cap-proximal intron splicing of a reporter minigene and endogenous genes. The impaired cap catabolism and resultant imbalanced cap concentrations were postulated to sequester the cap-binding complex (CBC) from its normal splicing function. In support of this explanation, DcpS efficiently displaced the nuclear cap-binding protein Cbp20 from cap structure, and complementation with Cbp20 reversed the reduced splicing, indicating that modulation of splicing by DcpS is mediated through Cbp20. Our studies demonstrate that the significance of DcpS extends beyond its well-characterized role in mRNA decay and involves a broader range of functions in RNA processing including nuclear pre-mRNA splicing.
منابع مشابه
The human decapping scavenger enzyme DcpS modulates microRNA turnover
The decapping scavenger enzyme DcpS is known for its role in hydrolyzing the cap structure following mRNA degradation. Recently, we discovered a new function in miRNA degradation activation for the ortholog of DcpS in C. elegans. Here we show that human DcpS conserves its role in miRNA turnover. In human cells, DcpS is a nucleocytoplasmic shuttling protein that activates miRNA degradation indep...
متن کاملThe scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases.
We recently demonstrated that the major decapping activity in mammalian cells involves DcpS, a scavenger pyrophosphatase that hydrolyzes the residual cap structure following 3' to 5' decay of an mRNA. The association of DcpS with 3' to 5' exonuclease exosome components suggests that these two activities are linked and there is a coupled exonucleolytic decay-dependent decapping pathway. We purif...
متن کاملElimination of cap structures generated by mRNA decay involves the new scavenger mRNA decapping enzyme Aph1/FHIT together with DcpS
Eukaryotic 5' mRNA cap structures participate to the post-transcriptional control of gene expression before being released by the two main mRNA decay pathways. In the 3'-5' pathway, the exosome generates free cap dinucleotides (m7GpppN) or capped oligoribonucleotides that are hydrolyzed by the Scavenger Decapping Enzyme (DcpS) forming m7GMP. In the 5'-3' pathway, the decapping enzyme Dcp2 gener...
متن کاملFunctional analysis of mRNA scavenger decapping enzymes.
Eukaryotic cells primarily utilize exoribonucleases and decapping enzymes to degrade their mRNA. Two major decapping enzymes have been identified. The hDcp2 protein catalyzes hydrolysis of the 5' cap linked to an RNA moiety, whereas the scavenger decapping enzyme, DcpS, functions on a cap structure lacking the RNA moiety. DcpS is a member of the histidine triad (HIT) family of hydrolases and ca...
متن کاملLoss of the scavenger mRNA decapping enzyme DCPS causes syndromic intellectual disability with neuromuscular defects
mRNA decay is an essential and active process that allows cells to continuously adapt gene expression to internal and environmental cues. There are two mRNA degradation pathways: 3' to 5' and 5' to 3'. The DCPS protein is the scavenger mRNA decapping enzyme which functions in the last step of the 3' end mRNA decay pathway. We have identified a DCPS pathogenic mutation in a large family with thr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RNA
دوره 14 6 شماره
صفحات -
تاریخ انتشار 2008